Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109291, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38450151

RESUMO

The pursuit of cost-effective, high-voltage electricity generators activated by droplets represents a new frontier in hydropower technology. This study presents an economical method for crafting droplet generators using common materials such as solid polytetrafluoroethylene (PTFE) films and readily available tapes, eliminating the need for specialized cleanroom facilities. A thorough investigation into voltage-limiting factors, encompassing device capacitance and induced electrode charges, reveals specific areas with potential for optimization. A substantial enhancement in the open-circuit voltage (Voc) was achieved, reaching approximately 282.2 ± 27.9 V-an impressive increase of around 60 V compared to earlier benchmarks. One device showcased its capability to power 100 LEDs concurrently, underscoring its efficacy. Ten such devices created diverse luminous patterns with uniform light intensity for each LED, showcasing the practical potential of the approach. The methodology's cost-effectiveness results in a remarkable cost reduction compared to solution-based materials, paving the way for the widespread adoption of large-scale water droplet energy harvesting.

2.
Water Res ; 253: 121282, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341976

RESUMO

The choice of appropriate biofilm control strategies in membrane systems for seawater desalination pretreatment relies on understanding the properties of the biofilm formed on the membrane. This study reveals how the biofilm composition, including both organic and inorganic, influenced the biofilm behavior under mechanical loading. The investigation was conducted on two Gravity-Driven Membrane reactors employing Microfiltration (MF) and Ultrafiltration (UF) membrane for the pretreatment of raw seawater. After a stabilization period of 20 days (Phase I), a biofilm behavior test was introduced (Phase II) to evaluate (i) biofilm deformation during the absence of permeation (i.e., relaxation) and (ii) biofilm resistance to detachment forces (i.e., air scouring). The in-situ monitoring investigation using Optical Coherence Tomography (OCT) revealed that the biofilms developed on MF and UF membrane presented a rigid structure in absence of filtration forces, limiting the application of relaxation and biofilm expansion necessary for cleaning. Moreover, under shear stress conditions, a higher reduction in biofilm thickness was observed for MF (-60%, from 84 to 34 µm) compared to UF (-30%, from 64 to 45 µm), leading to an increase of permeate flux (+60%, from 9.1 to 14.9 L/m2/h and +20 % from 7.8 to 9.5 L/m2/h, respectively). The rheometric analysis indicated that the biofilm developed on MF membrane had weaker mechanical strength, displaying lower storage modulus (-50 %) and lower loss modulus (-55 %) compared to UF. These differences in mechanical properties were linked to the lower concentration of polyvalent ions and the distribution of organic foulants (i.e., BB, LMW-N) found in the biofilm on the MF membrane. Moreover, in the presence of air scouring led to a slight difference in microbial community between UF and MF. Our findings provide valuable insight for future investigations aimed at engineer biofilm composition to optimize biofilm control strategies in membrane systems for seawater desalination pretreatment.


Assuntos
Ultrafiltração , Purificação da Água , Ultrafiltração/métodos , Membranas Artificiais , Filtração/métodos , Biofilmes , Água do Mar/química , Purificação da Água/métodos , Osmose
3.
Water Res ; 249: 120914, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007899

RESUMO

The fouling of seawater reverse osmosis (SWRO) membranes remains a persistent challenge in desalination. Previous research has focused mainly on fouling separately; however, organic, inorganic, and biofouling can coexist and influence each other. Hence, in-depth study of the spatiotemporal changes in actual combined fouling in full-scale seawater desalination will provide more effective information for fouling investigation and control. In this study, we monitored (i) the operational performance of a full-scale desalination plant for 7 years and (ii) the development and characterization of membrane and spacer fouling at different locations of spiral-wound membrane modules sampled after 2.5-, 3.5-, and 7-year operation. The findings showed that (i) operational performance indicators declined with time (normalized flux 40 % reduction, salt rejection 2 % in 7 years), with a limited effect of the 20-day cleaning frequency, (ii) fouling accumulation in the membrane module mainly occurred at the feed side of the lead module and the microbial community in these area exhibited the highest diversity, (iii) the dominant microbial OTUs belonged mainly to Proteobacteria (43-70 %), followed by Bacteroidetes (10-11 %), (iv) Phylogenetic molecular ecological networks and Spearman correlation analysis revealed that Chloroflexi (Anaerolineae) and Planctomycetes were keystone species in maintaining the community structure and biofilm maturation and significantly impacted the foulant content on the SWRO membrane, even with low abundance, and that (v) fouling accumulation was composed of polysaccharides, soluble microbial products, marine humic acid-like substances, and inorganic Ca/Fe/Mg/Si dominate the fouling layer of both the membrane and spacer. Overall, variation partitioning analysis quantitatively describes the increasing contribution of biofouling over time. Ultimately, the organic‒inorganic-biofouling interaction (70 %) significantly contributed to the overall fouling of the membrane after 7 years of operation. These results can be used to develop more targeted fouling control strategies to optimize SWRO desalination plant design and operation.


Assuntos
Incrustação Biológica , Purificação da Água , Filogenia , Membranas Artificiais , Purificação da Água/métodos , Osmose , Água do Mar/química
4.
Sci Rep ; 13(1): 10798, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402781

RESUMO

Optimal spacer design enhances the filtration performance in spiral-wound modules by controlling the local hydrodynamics inside the filtration channel. A novel airfoil feed spacer design fabricated using 3D-printing technology is proposed in this study. The design is a ladder-shaped configuration with primary airfoil-shaped filaments facing the incoming feed flow. The airfoil filaments are reinforced by cylindrical pillars supporting the membrane surface. Laterally, all the airfoil filaments are connected by thin cylindrical filaments. The performances of the novel airfoil spacers are evaluated at Angle of Attack (AOA) of 10° (A-10 spacer) and 30° (A-30 spacer) and compared with commercial (COM) spacer. At fixed operating conditions, simulations indicate steady-state hydrodynamics inside the channel for A-10 spacer, while an unsteady state is found for A-30 spacer. Numerical wall shear stress for airfoil spacers is uniformly distributed and has a higher magnitude than the COM spacer. A-30 spacer design is the most efficient in ultrafiltration process with enhanced permeate flux (228%) and reduced specific energy consumption (23%) and biofouling development (74%) as characterized by Optical Coherence Tomography. Results systematically demonstrate the influential role of airfoil-shaped filaments for feed spacer design. Modifying AOA allows localized hydrodynamics to be effectively controlled according to the filtration type and operating conditions.

5.
Sci Total Environ ; 892: 164687, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37290651

RESUMO

Nanoplastics (NPs) are ubiquitous contaminants that have adverse effects on human health. Previous research has explored the toxicity of NPs on specific organs at high doses, but this is insufficient for accurate health risk assessments. In the present study, a systematic study of NPs toxicity in the liver, kidney, and intestine was performed on mice at an equivalent dose of potential human exposure and toxic dose for four weeks. The results revealed that NPs penetrated the intestinal barrier and accumulated in various organs including liver, kidney, and intestine via the clathrin-mediated endocytosis, phagocytosis, and paracellular pathways. At the toxic dose, damage scores on physiology, morphology, and redox balance were more than twice that at the environmentally relevant dose, which was dose-depended. The jejunum experienced the most severe damage compared to the liver and kidney. In addition, a significant correlation between biomarkers was found, such as TNF-α and cholinesterase levels, indicating a close connection between the intestine and liver. Remarkably, the NPs exposed mice had an approximate double reactive oxygen species content compared to the control. This study promotes comprehensive understanding of health risks caused by NPs throughout the body and informs future policies and regulations to mitigate NPs-related health concerns.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Humanos , Camundongos , Animais , Nanopartículas/toxicidade , Nanopartículas/metabolismo , Microplásticos/metabolismo , Estresse Oxidativo , Rim , Espécies Reativas de Oxigênio/metabolismo , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade
6.
Water Res ; 233: 119802, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871379

RESUMO

20 years since the first report on the biofouling potential of chemicals used for scale control, still, antiscalants with high bacterial growth potential are used in practice. Evaluating the bacterial growth potential of commercially available antiscalants is therefore essential for a rational selection of these chemicals. Previous antiscalant growth potential tests were conducted in drinking water or seawater inoculated with model bacterial species which do not represent natural bacterial communities. To reflect better on the conditions of desalination systems, we investigated the bacterial growth potential of eight different antiscalants in natural seawater and an autochthonous bacterial population as inoculum. The antiscalants differed strongly in their bacterial growth potential varying from ≤ 1 to 6 µg easily biodegradable C equivalents/mg antiscalant. The six phosphonate-based antiscalants investigated showed a broad range of growth potential, which depended on their chemical composition, whilst the biopolymer and the synthetic carboxylated polymers-based antiscalants showed limited or no significant bacterial growth. Moreover, nuclear magnetic resonance (NMR) scans enabled antiscalant fingerprinting, identifying components and contaminants, providing a rapid and sensitive characterization, and opening opportunities for rational selection of antiscalants for biofouling control.


Assuntos
Incrustação Biológica , Purificação da Água , Água do Mar/química , Osmose , Membranas Artificiais
7.
Water Res ; 229: 119384, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442271

RESUMO

In this study non-invasive low field magnetic resonance imaging (MRI) technology was used to monitor fouling induced changes in fiber-by-fiber hydrodynamics inside a multi-fiber hollow fiber membrane module containing 401 fibers. Using structural and velocity images the fouling evolution of these membrane modules were shown to exhibit distinct trends in fiber-by-fiber volumetric flow, with increasing fouling causing a decrease in the number of flow active fibers. This study shows that the fouling rate is not evenly distributed over the parallel fibers, which results in a broadening of the fiber to fiber flowrate distribution. During cleaning, this distribution is initially broadened further, as relatively clean fibers are cleaned more rapidly compared to clogged fibers. By tracking the volumetric flow rate of individual fibers inside the modules during the fouling-cleaning cycle it was possible to observe a fouling memory-like effect with residual fouling occurring preferentially at the outer edge of the fiber bundle during repeated fouling-cleaning cycle. These results demonstrate the ability of MRI velocity imaging to quantitatively monitor these effects which are important when testing the effectiveness of cleaning protocols due to the long term effect that residual fouling and memory-like effect may have on the operation of membrane modules.


Assuntos
Membranas Artificiais , Purificação da Água , Reatores Biológicos , Imageamento por Ressonância Magnética , Hidrodinâmica , Purificação da Água/métodos , Ultrafiltração
8.
Water Res ; 223: 118983, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988337

RESUMO

Biofouling is a hurdle of seawater desalination that increases water costs and energy consumption. In membrane distillation (MD), biofouling development is complicated due to the temperature effect that adversely affects microbial growth. Given the high relevance of MD to regions with abundant warm seawater, it is essential to explore the biofouling propensity of microbial communities with higher tolerance to elevated temperature conditions. This study presents a comprehensive analysis of the spatial and temporal biofilm distribution and associated membrane fouling during direct contact MD (DCMD) of the Red Sea water. We found that structure and composition of the biofilm layer played a significant role in the extent of permeate flux decline, and biofilms that built up at 45°C had lower bacterial concentration but higher extracellular polymeric substances (EPS) content as compared to biofilms that formed at 55 °C and 65°C. Pore wetting and bacterial passage to the permeate side were initially observed but slowed down as operating time increased. Intact cells in biofilms dominated over the damaged cells at any tested condition emphasizing the high adaptivity of the Red Sea microbial communities to elevated feed temperatures. A comparison of microbial abundance revealed a difference in bacterial distribution between the feed and biofilm samples. A shift in the biofilm microbial community and colonization of the membrane surface with thermophilic bacteria with the feed temperature increase was observed. The results of this study improve our understanding of biofouling propensity in MD that utilizes temperature-resilient feed waters.


Assuntos
Incrustação Biológica , Purificação da Água , Bactérias , Biofilmes , Destilação , Membranas Artificiais , Osmose , Água do Mar , Água , Purificação da Água/métodos
9.
Membranes (Basel) ; 12(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36005707

RESUMO

The shortage of fresh water resources has made the desalination of seawater a widely adopted technology. Seawater reverse osmosis (SWRO) is the most commonly used method for desalination. The SWRO process is energy-intensive, and most of the energy in SWRO is spent on pressurizing the seawater to overcome the osmotic barrier for producing fresh water. The pressure needed depends on the salinity of the seawater, its temperature, and the membrane surface properties. Membrane compaction occurs in SWRO due to hydraulic pressure application for long-term operations and operating temperature fluctuations due to seasonal seawater changes. This study investigates the effects of short-term feed water temperature increase on the SWRO process in a full-scale pilot with pretreatment and a SWRO installation consisting of a pressure vessel which contains seven industrial-scale 8" diameter spiral wound membrane elements. A SWRO feed water temperature of 40 °C, even for a short period of 7 days, caused a permanent performance decline illustrated by a strong specific energy consumption increase of 7.5%. This study highlights the need for membrane manufacturer data that account for the water temperature effect on membrane performance over a broad temperature range. There is a need to develop new membranes that are more tolerant to temperature fluctuations.

10.
Sci Total Environ ; 838(Pt 3): 156340, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35654208

RESUMO

This study aims to assess the effects of periodic membrane fouling control strategies in Gravity-Driven Membrane Bioreactor (GD-MBR) treating primary wastewater. The impact of each control strategy on the reactor performance (permeate flux and water quality), biomass morphology, and fouling composition were evaluated. The application of air scouring coupled with intermittent filtration resulted in the highest permeate flux (4 LMH) compared to only intermittent filtration (i.e., relaxation) (1 LMH) and air scouring under continuous filtration (2.5 LMH). Air scouring coupled with relaxation led to a thin (~50 µm) but with more porous fouling layer and low hydraulic resistance, presenting the lowest concentration of extracellular polymeric substance (EPS) in the biomass. Air scouring under continuous filtration led to a thin (~50 µm), dense, compact, and less porous fouling layer with the highest specific hydraulic resistance. The employment of only relaxation led to the highest fouling formation (~280 µm) on the membrane surface. The highest TN removal (~62%) was achieved in the reactor with only relaxation (no aeration) due to the anoxic condition in the filtration tank, while the highest COD removal (~ 60%) was achieved with air scouring under continuous filtration due to the longer aeration time and the denser fouling layer. The results highlighted the importance of performing in-depth fouling characterization to link the membrane fouling properties to the hydraulic resistance and membrane bioreactor performances (i.e., water quality and water production). Moreover, this work proven the versatility of the GD-MBR, where the choice of the appropriate operation and fouling control strategy relies on the eventual discharge or reuse of the treated effluent.


Assuntos
Membranas Artificiais , Purificação da Água , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Filtração/métodos , Águas Residuárias , Purificação da Água/métodos
11.
Water Res ; 219: 118554, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35576758

RESUMO

High-performance nanofiltration (NF) membrane with super antifouling capability as well as reusability is highly desired in water treatment. A new antifouling strategy by a coating-decoating-recoating cycle was investigated for effective removal of fouling and restoring the original membrane performance. The functional membrane surface was fabricated by in-situ coating a 'green' and biodegradable carboxymethyl chitosan (CMCS) layer as physical barrier. The CMCS layer can be decoated and re-coated by simple procedures. Results showed that (i) the CMCS layer enhanced surface hydrophilicity, surface smoothness and fouling resistance of NF membrane, (ii) both the unfouled and fouled CMCS layer were easily decoated by the strong acid solution, (iii) the CMCS layer was easily re-coated by facile recoating and (iv) the water flux recovery ratio of membrane with coating layer was maintained more than 88.8% during fouling testing by natural organic matter (NOM) after four sequential cycles of coating, decoating and recoating process. The re-coated membrane exhibited stable, improved membrane operational and antifouling performance. The coating-decoating-recoating approach is proven to be low-cost and eco-friendly strategy for NOM fouling control on NF membrane in water treatment applications.


Assuntos
Membranas Artificiais , Purificação da Água , Interações Hidrofóbicas e Hidrofílicas , Purificação da Água/métodos
12.
Membranes (Basel) ; 12(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35323810

RESUMO

Nutrient limitation has been proposed as a biofouling control strategy for membrane systems. However, the impact of permeation on biofilm development under phosphorus-limited and enriched conditions is poorly understood. This study analyzed biofilm development in membrane fouling simulators (MFSs) with and without permeation supplied with water varying dosed phosphorus concentrations (0 and 25 µg P·L-1). The MFSs operated under permeation conditions were run at a constant flux of 15.6 L·m2·h-1 for 4.7 days. Feed channel pressure drop, transmembrane pressure, and flux were used as performance indicators. Optical coherence tomography (OCT) images and biomass quantification were used to analyze the developed biofilms. The total phosphorus concentration that accumulated on the membrane and spacer was quantified by using microwave digestion and inductively coupled plasma atomic emission spectroscopy (ICP-OES). Results show that permeation impacts biofilm development depending on nutrient condition with a stronger impact at low P concentration (pressure drop increase: 282%; flux decline: 11%) compared to a higher P condition (pressure drop increase: 206%; flux decline: 2%). The biofilm that developed at 0 µg P·L-1 under permeation conditions resulted in a higher performance decline due to biofilm localization and spread in the MFS. A thicker biofilm developed on the membrane for biofilms grown at 0 µg P·L-1 under permeation conditions, causing a stronger effect on flux decline (11%) compared to non-permeation conditions (5%). The difference in the biofilm thickness on the membrane was attributed to a higher phosphorus concentration in the membrane biofilm under permeation conditions. Permeation has an impact on biofilm development and, therefore, should not be excluded in biofouling studies.

13.
Water Res ; 210: 118031, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998071

RESUMO

The application of membrane technology for water treatment and reuse is hampered by the development of a microbial biofilm. Biofilm growth in micro-and ultrafiltration (MF/UF) membrane modules, on both the membrane surface and feed spacer, can form a secondary membrane and exert resistance to permeation and crossflow, increasing energy demand and decreasing permeate quantity and quality. In recent years, exhaustive efforts were made to understand the chemical, structural and hydraulic characteristics of membrane biofilms. In this review, we critically assess which specific structural features of membrane biofilms exert resistance to forced water passage in MF/UF membranes systems applied to water and wastewater treatment, and how biofilm physical structure can be engineered by process operation to impose less hydraulic resistance ("below-the-pain threshold"). Counter-intuitively, biofilms with greater thickness do not always cause a higher hydraulic resistance than thinner biofilms. Dense biofilms, however, had consistently higher hydraulic resistances compared to less dense biofilms. The mechanism by which density exerts hydraulic resistance is reported in the literature to be dependant on the biofilms' internal packing structure and EPS chemical composition (e.g., porosity, polymer concentration). Current reports of internal porosity in membrane biofilms are not supported by adequate experimental evidence or by a reliable methodology, limiting a unified understanding of biofilm internal structure. Identifying the dependency of hydraulic resistance on biofilm density invites efforts to control the hydraulic resistance of membrane biofilms by engineering internal biofilm structure. Regulation of biofilm internal structure is possible by alteration of key determinants such as feed water nutrient composition/concentration, hydraulic shear stress and resistance and can engineer biofilm structural development to decrease density and therein hydraulic resistance. Future efforts should seek to determine the extent to which the concept of "biofilm engineering" can be extended to other biofilm parameters such as mechanical stability and the implication for biofilm control/removal in engineered water systems (e.g., pipelines and/or, cooling towers) susceptible to biofouling.


Assuntos
Incrustação Biológica , Purificação da Água , Biofilmes , Membranas Artificiais , Ultrafiltração
14.
Chemosphere ; 288(Pt 3): 132631, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34688716

RESUMO

The potential toxicity of nanoplastics (NPs) and microplastics (MPs) has raised concerns. However, knowledge of the effects of NPs/MPs on the health of mammals is still limited. Here we investigated the alteration of the physicochemical properties of polystyrene NPs (PS-NPs: 50 nm) and MPs (PS-MPs: 300 nm, 600 nm, 4 µm) in the gastrointestinal tract. Moreover, we investigated the uptake and bioaccumulation and the toxic effects of these plastic particles in the kidneys of mice. The results revealed that their digestion promoted the aggregation of PS-NPs and PS-MPs and increased the Zeta-potential value. Both PS-NPs and PS-MPs bioaccumulated in the kidneys, and the aggregation of 600 nm PS-MPs exacerbated their biotoxicity. The PS-NPs and PS-MPs caused mice weight loss, increased their death rate, significantly alternated several biomarkers, and resulted in histological damage of the kidney. We also found that exposure to PS-NPs and PS-MPs induced oxidative stress and the development of inflammation. These findings provide new insights into the toxic effects of NPs and MPs on mice.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Bioacumulação , Rim , Camundongos , Estresse Oxidativo , Plásticos/toxicidade
15.
Membranes (Basel) ; 11(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34940429

RESUMO

Biofouling is a problem that hinders sustainable membrane-based desalination and the stratification of bacterial populations over the biofilm's height is suggested to compromise the efficiency of cleaning strategies. Some studies reported a base biofilm layer attached to the membrane that is harder to remove. Previous research suggested limiting the concentration of phosphorus in the feed water as a biofouling control strategy. However, the existence of bacterial communities growing under phosphorus-limiting conditions and communities remaining after cleaning is unknown. This study analyzes the bacterial communities developed in biofilms grown in membrane fouling simulators (MFSs) supplied with water with three dosed phosphorus conditions at a constant biodegradable carbon concentration. After biofilm development, biofilm was removed using forward flushing (an easy-to-implement and environmentally friendly method) by increasing the crossflow velocity for one hour. We demonstrate that small changes in phosphorus concentration in the feed water led to (i) different microbial compositions and (ii) different bacterial-cells-to-EPS ratios, while (iii) similar bacterial biofilm populations remained after forward flushing, suggesting a homogenous bacterial community composition along the biofilm height. This study represents an exciting advance towards greener desalination by applying non-expensive physical cleaning methods while manipulating feed water nutrient conditions to prolong membrane system performance and enhance membrane cleanability.

16.
Front Microbiol ; 12: 668761, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349735

RESUMO

This work describes the chemical composition of extracellular polymeric substances (EPS) produced by three bacteria (RO1, RO2, and RO3) isolated from a biofouled reverse osmosis (RO) membrane. We isolated pure cultures of three bacterial strains from a 7-year-old biofouled RO module that was used in a full-scale seawater treatment plant. All the bacterial strains showed similar growth rates, biofilm formation, and produced similar quantities of proteins and polysaccharides. The gel permeation chromatography showed that the EPS produced by all the strains has a high molecular weight; however, the EPS produced by strains RO1 and RO3 showed the highest molecular weight. Fourier Transform Infrared Spectroscopy (FTIR), Proton Nuclear Magnetic Resonance (1H NMR), and Carbon NMR (13C NMR) were used for a detailed characterization of the EPS. These physicochemical analyses allowed us to identify features of EPS that are important for biofilm formation. FTIR analysis indicated the presence of α-1,4 glycosidic linkages (920 cm-1) and amide II (1,550 cm-1) in the EPS, the presence of which has been correlated with the fouling potential of bacteria. The presence of α-glycoside linkages was further confirmed by 13C NMR analysis. The 13C NMR analysis also showed that the EPS produced by these bacteria is chemically similar to foulants obtained from biofouled RO membranes in previous studies. Therefore, our results support the hypothesis that the majority of substances that cause fouling on RO membranes originate from bacteria. Investigation using 1H NMR showed that the EPS contained a high abundance of hydrophobic compounds, and these compounds can lead to flux decline in the membrane processes. Genome sequencing of the isolates showed that they represent novel species of bacteria belonging to the genus Bacillus. Examination of genomes showed that these bacteria carry carbohydrates-active enzymes that play a role in the production of polysaccharides. Further genomic studies allowed us to identify proteins involved in the biosynthesis of EPS and flagella involved in biofilm formation. These analyses provide a glimpse into the physicochemical properties of EPS found on the RO membrane. This knowledge can be useful in the rational design of biofilm control treatments for the RO membrane.

17.
Membranes (Basel) ; 11(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206467

RESUMO

The manner in which membrane-fouling experiments are conducted and how fouling performance data are represented have a strong impact on both how the data are interpreted and on the conclusions that may be drawn. We provide a couple of examples to prove that it is possible to obtain misleading conclusions from commonly used representations of fouling data. Although the illustrative example revolves around dead-end ultrafiltration, the underlying principles are applicable to a wider range of membrane processes. When choosing the experimental conditions and how to represent fouling data, there are three main factors that should be considered: (I) the foulant mass is principally related to the filtered volume; (II) the filtration flux can exacerbate fouling effects (e.g., concentration polarization and cake compression); and (III) the practice of normalization, as in dividing by an initial value, disregards the difference in driving force and divides the fouling effect by different numbers. Thus, a bias may occur that favors the experimental condition with the lower filtration flux and the less-permeable membrane. It is recommended to: (I) avoid relative fouling performance indicators, such as relative flux decline (J/J0); (II) use resistance vs. specific volume; and (III) use flux-controlled experiments for fouling performance evaluation.

18.
ACS Appl Mater Interfaces ; 13(27): 32205-32216, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34225456

RESUMO

Biofouling remains as a persistent problem impeding the applications of membranes for water and wastewater treatment. Green anti-biofouling of membranes made of natural and environmentally friendly materials and methods is a promising strategy to tackle this problem. Herein, we have developed a functionalized PVDF membrane with stimuli-responsive lysozyme nanocapsules (NCP). These nanocapsules can responsively release lysozyme according to environmental stimuli (pH and redox) induced by bacteria. Results showed that (i) the surface of the functionalized membrane with NCP had enhanced hydrophilicity, reduced roughness, and negative charge, (ii) a remarkable reduction of adsorption of proteins, polysaccharides, and bacteria was achieved by the functionalized membrane, and (iii) the colony forming unit (CFU) of bacteria on a membrane surface was reduced more than 80% within 24 h of contact. In addition, the NCP membrane showed excellent anti-biofouling activity regarding the bacterial viability being 12.5 and 8.3% on the membrane after filtration with 108 CFU mL-1 Escherichia coli and Staphylococcus aureus solution as feed, respectively. The coating layer and assembled nanocapsules endowed the membrane with improved lysozyme stability, anti-adhesion performance, and antibacterial activity. Stimuli-responsive lysozyme nanocapsule engineered microfiltration membranes show great potential for anti-biofouling in future practical application.


Assuntos
Incrustação Biológica/prevenção & controle , Engenharia , Filtração , Membranas Artificiais , Microtecnologia/métodos , Muramidase/química , Muramidase/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Cápsulas , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Viabilidade Microbiana/efeitos dos fármacos , Nanoestruturas/química , Oxirredução , Propriedades de Superfície
19.
PLoS One ; 16(6): e0253799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166448

RESUMO

Desalination technology based on Reverse Osmosis (RO) membrane filtration has been resorted to provide high-quality drinking water. RO produced drinking water is characterized by a low bacterial cell concentration. Monitoring microbial quality and ensuring membrane-treated water safety has taken advantage of the rapid development of DNA-based techniques. However, the DNA extraction process from RO-based drinking water samples needs to be evaluated regarding the biomass amount (filtration volume) and residual disinfectant such as chlorine, as it can affect the DNA yield. We assessed the DNA recovery applied in drinking water microbiome studies as a function of (i) different filtration volumes, (ii) presence and absence of residual chlorine, and (iii) the addition of a known Escherichia coli concentration into the (sterile and non-sterile, chlorinated and dechlorinated) tap water prior filtration, and directly onto the (0.2 µm pore size, 47 mm diameter) mixed ester cellulose membrane filters without and after tap water filtration. Our findings demonstrated that the co-occurrence of residual chlorine and low biomass/cell density water samples (RO-treated water with a total cell concentration ranging between 2.47 × 102-1.5 × 103 cells/mL) failed to provide sufficient DNA quantity (below the threshold concentration required for sequencing-based procedures) irrespective of filtration volumes used (4, 20, 40, 60 L) and even after performing dechlorination. After exposure to tap water containing residual chlorine (0.2 mg/L), we observed a significant reduction of E. coli cell concentration and the degradation of its DNA (DNA yield was below detection limit) at a lower disinfectant level compared to what was previously reported, indicating that free-living bacteria and their DNA present in the drinking water are subject to the same conditions. The membrane spiking experiment confirmed no significant impact from any potential inhibitors (e.g. organic/inorganic components) present in the drinking water matrix on DNA extraction yield. We found that very low DNA content is likely to be the norm in chlorinated drinking water that gives hindsight to its limitation in providing robust results for any downstream molecular analyses for microbiome surveys. We advise that measurement of DNA yield is a necessary first step in chlorinated drinking water distribution systems (DWDSs) before conducting any downstream omics analyses such as amplicon sequencing to avoid inaccurate interpretations of results based on very low DNA content. This study expands a substantial source of bias in using DNA-based methods for low biomass samples typical in chlorinated DWDSs. Suggestions are provided for DNA-based research in drinking water with residual disinfectant.


Assuntos
Cloro/química , DNA Bacteriano , Água Potável/microbiologia , Escherichia coli , Microbiologia da Água , Purificação da Água , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação
20.
Water Res ; 201: 117323, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34139511

RESUMO

Natural Deep Eutectic Solvents (NADES) are composed of supramolecular interactions of two or more natural compounds, such as organic acids, sugars, and amino acids, and they are being used as a new media alternative to conventional solvents. In this study, a new application of NADES is presented as a possible technology for biofilm structural breaker in complex systems since the current solvents used for biofilm cleaning and extraction of biofilm components use hazardous solutions. The NADES (betaine:urea:water and lactic acid:glucose:water) were analyzed before and after the biofilm treatment by attenuated total reflection Fourier-transform infrared spectroscopy and fluorescence excitation-emission matrix spectroscopy. Our results indicate that the green solvents could solubilize up to ≈70 percent of the main components of the biofilms extracellular matrix. The solubilization of the biomolecules weakened the biofilm structure, which could enhance the biofilm solubilization and removal. The NADES have the potential to be an environment-friendly, green solvent to extract valuable compounds and break the main structure from the biofilm, leading to a greener method for extracellular polymeric substance (EPS) extraction and biofilm treatment in various water treatment systems.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Extratos Vegetais , Solventes , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...